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Abstract
Location‐based social media (LBSM) has been widely uti‐
lized to supplement traditional survey methods in mode‐
ling human activity patterns. However, there has not been 
sufficient study to assess the reliability of these data in 
deriving human movement. This research aims to evaluate 
how data collection duration and sample sizes affect the 
reliability of LBSM data in activity modeling based on two 
indicators: radius of gyration (ROG) and entropy. We use a 
linear regression model with logarithmic transformation to 
approximate how the magnitude of each indicator changes 
with different data collection durations—from 1 to 12 
months. The results indicate that both ROG and entropy 
increase when the amount of data increases. However, the 
rate of increase slows down and approaches zero eventu‐
ally. We also approximated the limit values and verified 
that with 12‐month data, we are at approximately >95% 
magnitude of the limit values for both indicators in all 
three cities. The clustering analysis also demonstrated that 
there are outlier users who exhibit distinct patterns. This 
case study focuses on three Chinese cities (Beijing, 
Shanghai, and Guangzhou) and provides a useful reference 
to explore the balance point between data effectiveness 
and an appropriate sample size from LBSM data.
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1  | INTRODUC TION

In the past few decades, various research fields, including geography, transportation, computational physics, and 
computer science, have made much progress in the theories, methods, and applications of human activity analysis 
(Aggarwal & Ryoo, 2011; Gonzalez, Hidalgo, & Barabasi, 2008; Song, Qu, Blumm, & Barabasi, 2010). Originally, 
human activity studies were rooted in the study of modeling the general patterns of human mobility in space and 
time, such as Random Walk and its many derivatives (Borrel, De Amorim, & Fdida, 2006). These models have an 
impact on all phenomena and activities driven by human mobility, including urban planning and agent‐based mod‐
eling approaches in transportation (Gonzalez et al., 2008). However, many mobility models are constructed at an 
abstract and general level, and therefore do not focus on representing concrete human activities (Yuan, Raubal, 
& Liu, 2012). In addition, previous studies also focus on the theories and methods in mining individual trajectories 
(Zheng & Zhou, 2011), including Intra‐trajectoryI studies (i.e., defining measurements and indicators to model the 
inherent characteristics of human trajectories) (Ahmed, Karagiorgou, Pfoser, & Wenk, 2015; Zhao & Xu, 2009) and 
inter‐trajectory studies (i.e., measuring trajectory similarity among individuals) (Abraham & Lal, 2010; Xia, Wang, 
Zhang, Kim, & Bae, 2011; Zhang, Huang, & Tan, 2006).

Unlike general mobility models in computational physics or trajectory analysis in computer science, activity 
studies in geography are usually georeferenced to a specific geographic location within geographic/projected 
coordinate systems (e.g., a specific city), and they focus on analyzing the activity participation of populations 
under different geographic and temporal contexts. Jones, Koppelman, and Orfueil (1990) defined activity analysis 
as a framework of modeling the similarities and distinctions of travel as daily or multi‐day patterns for population 
groups with different lifestyles. Among all human activity studies, modeling activity space is an important topic 
to determine the spatial distribution of human behavior (Golledge & Stimson, 1997), which is defined as the local 
areas within which people travel during their daily activities (Mazey, 1981). Researchers have focused on both the 
morphology and the internal structure of human activity space—the former measures its basic characteristics (e.g., 
size, shape, etc.) and the latter emphasizes the reasons for which an activity space forms (e.g., regularly visited 
locations) (Golledge & Stimson, 1997; Schönfelder & Axhausen, 2002).

Traditional human activity analysis often utilizes travel surveys and questionnaires for data collection (Levinson 
& Kumar, 1995; Schönfelder & Axhausen, 2002). However, collecting such data can be costly, time consuming, and 
may only cover a relatively small sample set in a limited spatial environment. Meanwhile, the development of 
location‐based social media (LBSM), defined as “Social Network Sites that include location information” (Roick & 
Heuser, 2013), has provided more flexibility for researchers regarding where, when, and how to collect human 
activity behavior. Studies utilizing LBSM for analyzing both individual and aggregated patterns have grown rapidly 
(Cho, Myers, & Leskovec, 2011; Gao & Liu, 2015; Hasan, Zhan, & Ukkusuri, 2013; Zagheni, Garimella, Weber, & 
State, 2014). Although many studies have attempted to classify neighborhoods (such as the Livehoods project; 
Cranshaw, Schwartz, Hong, & Sadeh, 2012) and/or extract activity anchor points (e.g., “home” and “work”) (Qu & 
Zhang, 2013) from LBSM, there is a lack of understanding about the morphology (e.g., shape, size) and the internal 
structure (e.g., movement randomness) of activity space from such user‐contributed datasets (Malleson & Birkin, 
2014).

Similar to other types of big (geo) data, LBSM data also have different data quality issues, such as accuracy, 
precision, and sampling biases across various data sources. Hence, determining the appropriate data size, duration, 
and sampling resolution is crucial for designing a statistically sound study. However, in practice, these factors are 
often determined arbitrarily when using LBSM to analyze activity patterns, and there has yet to be a systematic 
study of how users’ activity spaces change with different sample sizes from LBSM. In general, while larger sample 
sizes can provide more location information for a certain population group, researchers often seek an appropriate 
data collection duration, which achieves a balance between the details of information and computation efficiency/
data collection cost. This article aims to address that issue.
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Therefore, the objective of this research is twofold. First, methodologically, we provide an extendable data 
mining strategy to optimize sample size in future studies. We start by defining two indicators, radius of gyration 
(ROG) and entropy, to reflect both the morphology (size) and the internal structure (randomness) of activity space. 
Second, empirically, we quantify the “effectiveness” of LBSM at modeling human activity space. Here, we define 
“effectiveness” as the stability of activity space indicators with different amounts of data used. We will also in‐
vestigate how this effectiveness manifests itself in different user categories in terms of the measurement of their 
activity space. Note that in this study, “data quantity” and “data collection duration” are used interchangeably. We 
chose data collection duration (e.g., 1 month, 2 months) instead of the exact number of check‐ins (e.g., 1,000 re‐
cords, 2,000 records) for two reasons: (1) to be consistent with other social media analysis, as most data collection 
campaigns are conducted based on a chronological circle (e.g., weeks or months); and (2) to collect our user data 
under the same study period so that they are comparable.

The remainder of this article is organized as follows: Section 2 describes related work in the areas of activity 
space modeling, LBSM data analysis, and its data quality issues; Section 3 introduces the fundamental research 
design, including the dataset and our methodology; Section 4 presents the data analyses and discusses various 
aspects of the output in detail. We conclude this research and present directions for future work in Section 5.

2  | REL ATED WORK

2.1 | Modeling human activities from LBSM 

The development of social networking sites such as Twitter, Flickr, Instagram, and Facebook provides more op‐
portunities to analyze human activity patterns based on crowd‐sourced big geodata (Cho et al., 2011; Haffner, 
Mathews, Fekete, & Finchum, 2018; Hawelka et al., 2014; Malleson & Birkin, 2014; Yuan & Medel, 2016). Unlike 
traditional survey or individually collected GPS data, LBSM datasets cover a larger sample size and can easily be 
accessed by application programming interfaces (APIs), therefore they provide a rich resource for researchers 
to analyze human activity patterns from both aggregated (urban) and individual perspectives (Cao et al., 2015; 
Liben‐Nowell, Novak, Kumar, Raghavan, & Tomkins, 2005; Yuan & Medel, 2016). From the urban perspective, 
researchers have investigated how user activities in different cities exhibit universal properties, as cities have 
been shown to be scaled versions of each other, despite their cultural and historical differences (Cho et al., 2011). 
Many studies attempted to link human mobility to urban structure and activities (Bawa‐Cavia, 2011; Cranshaw et 
al., 2012; Liu et al., 2015; Mohammady & Culotta, 2014). For example, Phithakkitnukoon, Horanont, Di Lorenzo, 
Shibasaki, and Ratti (2010) developed an activity‐aware map to investigate the most probable activity associated 
with each urban district. The results provide transportation and urban planners more accurate data to plan for a 
more sustainable city.

In addition to the urban‐oriented research, previous studies have demonstrated the power of LBSM data in 
analyzing individual‐oriented activity behavior and constructing mobility models (Cho et al., 2011). As stated in 
Jones et al. (1990), activity analysis is a framework for analyzing travel behavior as daily or multi‐day patterns 
derived from lifestyles and activity participation among the population. Activity‐based studies incorporate more 
spatial, temporal, and social constraints, in contrast to traditional human mobility studies, which are closely tied 
to the construction of generalized mobility and aim to describe general patterns and basic laws (Elliott & Urry, 
2010). For example, environmental constraints are usually built into microeconomic models as parameters when 
conducting travel forecasting simulations. LBSM has attracted global users to share their whereabouts on daily, 
weekly, and long‐term temporal scales, making LBSM particularly suitable for modeling individual patterns such 
as activity scheduling, social network structure, and location prediction. For instance, Hasan et al. (2013) analyzed 
the temporal distribution of different categories of user activities. Cho et al. (2011) studied how social constraints 
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like friendship influence individuals’ movements. The results indicate that the farther a user travels, the more likely 
his/her movement is influenced by a friend who lives close to the travel destination.

Furthermore, recent studies also combined individual and urban‐oriented research by investigating spatial 
semantics from user‐generated content on LBSM, as well as its impact on modeling social relations or delin‐
eating thematically distinct hotspots in urban systems (Bennett & Agarwal, 2007; Goodchild & Li, 2012; Liu et 
al., 2015). For instance, Jenkins, Croitoru, Crooks, and Stefanidis (2016) investigated the emergence of unique 
topics at different locations and the identification of urban hotspots based on semantic signatures. Another 
study by Steiger, Resch, and Zipf (2016) analyzed how relationships among people can be discovered by mod‐
eling their activities using a trans‐disciplinary approach combing spatial, temporal, and semantic dimensions. 
These studies went beyond the spatial dimension to incorporate the semantics of LBSM in interpreting user 
activity behaviors.

Among all activity‐based studies, the measurement of activity space is an important topic when studying the 
spatial distribution of individual behavior. Activity space is defined as the local areas that people travel within 
while performing their daily activities (Becker et al., 2013; Mazey, 1981; Yuan & Raubal, 2016). Traditionally, re‐
searchers have investigated both the morphology and the internal structure of activity space—the former mea‐
sures its basic characteristics (e.g., size, shape, etc.) and the latter emphasizes the reasons for which an activity 
space forms (e.g., regularly visited locations) (Golledge & Stimson, 1997; Schönfelder & Axhausen, 2002). Previous 
studies used various measurements to approximate the external morphology of human activity space, such as 
ellipse‐based measures (e.g., standard deviation ellipse and confidence ellipse) (Schönfelder & Axhausen, 2002), 
convex hull (Lee, Davis, Yoon, & Goulias, 2016), ROG (Song et al., 2010), and so on. Researchers also developed 
various methodologies to explore the internal structure of activity space. As Golledge and Stimson (1997) pointed 
out, there are three determinants of activity space for a given individual: (1) the position of the individual’s home 
location; (2) regularly visited activity locations (i.e., points of interest, POIs) such as work location, grocery stores, 
park, cinemas, and so on; and (3) travel between and around the pegs, such as the accessibility of public transport 
to regularly visited locations. Therefore, many previous studies concentrated on extracting activity anchor points 
and individual differences of visiting these points, as well as understanding the formation of activity spaces (Ahas 
et al., 2015; Long & Nelson, 2013; Malleson & Birkin, 2014; Phithakkitnukoon et al., 2010; Silm & Ahas, 2014; Xu 
et al., 2015, 2016, 2015, 2016). In addition to external characteristics, researchers also applied various measures 
to quantify the internal structure of individual activity space, such as network‐based measures (e.g., standard 
travel time polygon and shortest‐path spanning tree) (Schönfelder & Axhausen, 2010; Sherman, Spencer, Preisser, 
Gesler, & Arcury, 2005) and density‐based/probability‐based measures [e.g., an activity surface created from ker‐
nel density estimation (Kwan, 2000), or an entropy value showing the probabilistic distribution of visiting different 
POIs (Song et al., 2010; Yuan et al., 2012)].

In the big data era, the widespread use of location‐based technologies has provided rich geographic informa‐
tion to measure individual activity space, including but not limited to georeferenced mobile phone data, LBSM 
check‐in data, Bluetooth data, and so on. However, many of the aforementioned studies focused on georeferenced 
mobile phone data, such as call detailed records (CDRs), due to the wide usage of cell phones. As mentioned in 
Section 1, although previous studies have utilized LBSM for certain activity analyses, such as neighborhood clas‐
sification (Cranshaw et al., 2012), there has not been extensive analysis of the effectiveness of such self‐reported 
datasets on deriving user activity space (Malleson & Birkin, 2014). Because there are a large number of activity 
space indicators, we chose one external indicator (radius of gyration, ROG) and one internal indicator (entropy) 
as a case study to examine how the magnitude of these measurements changes with the amount of LBSM data 
used, as both indicators are commonly used in activity space studies and have proven to be more robust to outlier 
points (Song et al., 2010). For example, ROG has been widely used to represent the spatial dispersion and activity 
range of individual daily activities (Xu et al., 2015). Entropy is often used to indicate the randomness of activity 
patterns, which is invaluable in determining the likelihood of users returning to previously visited locations and 
predicting future trips (Song et al., 2010). The goal of this study is not to review the robustness of every activity 
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space indicator. Instead, we aim to propose a data processing strategy that can be extended to other datasets and 
activity space measures in order to help researchers optimize their research design.

2.2 | Data quality issues of LBSM 

Compared to georeferenced mobile phone data such as CDRs, LBSM data often have more reliable spatial ac‐
curacy (e.g., 5–10 m from a built‐in smart phone GPS module versus 300–500 m from a cell tower position) 
(Calabrese, Ferrari, & Blondel, 2015). However, a series of potential data issues from LBSM data can also affect 
the reliability of analysis results when deriving human activity patterns from these datasets (Kaisler, Armour, 
Espinosa, & Money, 2013). Spatial data quality, such as accuracy/precision, resolution, completeness, and consist‐
ency (Veregin, 1999), plays a fundamental role in geographic analysis, therefore it is crucial to assess the reliability 
of LBSM data for human activity studies (Spielman, 2014). Previous research mostly analyzed LBSM quality issues 
from the following two perspectives.

• Data accuracy and validity. Noise and abnormality exist in most LBSM datasets (Kaisler et al., 2013). For exam‐
ple, fake accounts and check‐ins can be automatically generated by a computer program instead of an actual 
user, which inevitably jeopardizes the reliability of such datasets in human activity studies. It is possible for 
a machine‐generated account to post a large number of tweets from the same location. Although research‐
ers have investigated algorithms to detect spams on social network sites (SNSs) (Saini, 2014), identifying fake 
check‐ins still remains one of the biggest challenges in LBSM data quality assessment.

• Data completeness and availability. The completeness issue of LBSM data can be addressed from multiple per‐
spectives. First, most studies utilize data collected during a given time span. In reality, data size is often arbi‐
trarily defined in human mobility studies, which inevitably affects the quality of results (Cuzzocrea, Song, & 
Davis, 2011). Second, LBSM data follows a power law distribution, where the majority of users post sporadically 
and a very small portion of users check in frequently (Zafarani, Abbasi, & Liu, 2014). This inevitably affects 
the data completeness for certain users (Wu, Zhi, Sui, & Liu, 2014). The uneven distribution of LBSM data also 
exists across geographies, where users tend to create a disproportionate number of posts from certain loca‐
tions, resulting in a sampling bias in space (Preoţiuc‐Pietro & Cohn, 2013). For example, an exploratory analysis 
in Austin, TX found that Twitter users tend to post in recreational areas and the airport (Yuan, Wei, Chow, & 
Hagelman, 2017). Third, the characteristics of social media sites attract different user groups, which may result 
in demographic biases in mining, analyzing, and modeling LBSM data (Tufekci, 2014). Twitter, for instance, has 
proven to be more appealing to young people (Longley, Adnan, & Lansley, 2015). The selection bias from LBSM 
datasets remains a challenge in acquiring an unbiased and complete sample of the entire population (Hawelka 
et al., 2014; Longley et al., 2015; Mislove, Lehmann, Ahn, Onnela, & Rosenquist, 2012; Sloan, Morgan, Burnap, 
& Williams, 2015).

As discussed in Section 1, this research aims to address LBSM data quality from a data quantity perspective. We 
aim to analyze how LBSM data collection duration affects the modeling of human activity space, and how this 
effect can be clustered into different patterns. Section 3 describes the dataset and our methodology.

3  | RESE ARCH DESIGN

3.1 | Dataset

To ensure the generalizability of the results, we selected three Chinese cities (Beijing, Shanghai, and Guangzhou) 
in highly developed metropolitan areas as our study area. Beijing is the capital and the cultural, political, and 
economic center of China, with a population of 21.7 million based on the 2016 census data. Shanghai is a global 
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F I G U R E  1   The frequency distribution of Weibo check‐in data: (a) Beijing; (b) Shanghai; and (c) Guangzhou. 
For each city, the left sub‐figure shows the distribution of all the data, and the right sub‐figure shows a “zoom‐
in” view of users with fewer than 50 check‐ins
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financial hub known as the “Pearl of the Orient,” with a population of 24.15 million. Guangzhou is a crucial port city 
northwest of Hong Kong, with a population of 12.70 million (National Bureau of Statistics of China, 2016). Note 
that we only included the population within the city limit, instead of the entire metropolitan area. We extracted 
1.18 million georeferenced Weibo posts (i.e., check‐ins) for all three cities from April 2015 to March 2016 through 
the official Weibo API. Due to the power law nature of social media usage, many of these posts are from users 
who rarely use social media (Figure 1).

To ensure that we have adequate information to extract individual users’ activity patterns, we only consider 
users with at least 10 check‐ins during the study time span. Table 1 and Figure 2 show the number of users and 
check‐ins after data cleaning. As shown in Figure 2, Weibo check‐ins indicate a strong seasonal pattern, where 
October is the most active month. This is potentially due to the 9‐day‐long national holiday (the National Day) in 
China toward the beginning of October, during which Chinese residents often spend leisure time with their family. 
Figure 3 visualizes the geographic distribution of these check‐ins based on a point density plot. As can be seen, this 
study uses the administrative boundary of the three cities instead of focusing on the central municipality areas for 
two reasons:

1. In Chinese megacities like Beijing or Shanghai, many local residents live in suburban towns or districts 
and work in the city center, so their activity space goes beyond the central municipality area (Na, Kwan, 
& Chai, 2015; Xu et al., 2015). This is particularly important for cities like Shanghai, where only 39% 
of check‐ins are from the central urban area (Figure 4).

2. By using administrative boundaries, our study area is consistent with other studies that focus on analyzing 
urban mobility in these three cities using various types of big (geo) data (Ge, Shao, Xue, Zhu, & Cheng, 2017; Liu, 
Wang, Xiao, & Gao, 2012; Xu et al., 2015).

F I G U R E  1   Continued



     |  937Yuan and Wang

The extracted JavaScript Object Notation data from Weibo APIs contain various fields. Because this study 
focuses on analyzing human activity space, we only utilize the unique identifier (uid), the coordinates of check‐in 
locations, and the timestamp of a check‐in. Table 2 shows a few sample records.

3.2 | Methodology

As mentioned in Section 1, this article aims to explore the effectiveness of LBSM data for modeling human activ‐
ity space. We are particularly interested in answering two questions. First, based on aggregated data from the 
entire sample set, how does data quantity affect different activity space indicators? We calculate the magnitude 
of two activity space indicators (ROG and entropy) based on different amounts of data. We then conduct a model 
fitting to approximate the limit of activity space indicators in Beijing, Shanghai, and Guangzhou. Second, how 
does the impact of data quantity vary for different users? For example, are there any outlier users whose activity 
space indicators behave differently compared to the majority? This second part of the methodology focuses on 
exploring the impact of data quantity on modeling activity space from an individual perspective, so we use Beijing 
as a case study. The procedure of the analysis is listed in Figure 5, and the details of each step are illustrated as 
follows.

3.2.1 | Define indicators

User activity space is defined by a great quantity of characteristics, such as scale, shape, structure, direction, and 
so on (Gonzalez et al., 2008). Due to the large number of indicators, here we choose the following two indicators 
to measure both the external and internal characteristics of activity spaces.

F I G U R E  2   Monthly check‐in data after data pre‐processing

TA B L E  1   Weibo metadata after data cleaning

City Number of check‐ins Number of users

Beijing 48,997 2,775

Shanghai 33,194 1,781

Guangzhou 30,671 1,646
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Radius of gyration
As mentioned by Gonzalez et al. (2008), ROG is considered an indicator of activity scale and a measurement of the 
external morphology, defined as:

F I G U R E  3   Weibo check‐in data distribution: (a) Beijing; (b) Shanghai; and (c) Guangzhou
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where n refers to the number of check‐in locations of a given user; ri is the geographical coordinate of each check‐
in location; and rm refers to the centroid of all check‐in points of a given user.

(1)ROG=

√

√

√

√

1

n

n
∑

i=1

(

�⃗ri− ���⃗rm
)2

TA B L E  2   Example check‐in records

uida Timestamp Longitude Latitude

187811****** 2015‐06‐25 05:51:53 116.599239 39.908899

520391****** 2015‐11‐11 11:27:09 116.419662 40.090118

aWe removed the last few digits of user IDs due to privacy concerns. 

F I G U R E  4   Percentage of check‐ins in urban districts: (a) Beijing; (b) Shanghai; and (c) Guangzhou 
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As discussed in Section 2.1, researchers have proposed several other indicators to measure the morphology 
of activity space. However, many of these indicators are very sensitive to outlier points (Xu et al., 2015). Figure 6 
shows the approximated activity space of an example user based on three methods (convex hull, standard devi‐
ational ellipse, and ROG). As can be seen, ROG is the least sensitive measurement to the outlier point located in 
northeast Beijing. Moreover, ROG also provides one single measurement (i.e., the radius) to represent the scale 
of the activity space.

Entropy
Entropy characterizes the heterogeneity of user activity patterns (Song et al., 2010). The formula is derived as 
follows:

where pi refers to the probability of a given user checking in at the same place i, and N stands for the total number 
of places where this user checked in. It is considered an indicator for the internal structure and randomness of 
activity space.

(2)E=−

N
∑

i=1

pi log2 pi

F I G U R E  5   Flow chart of methodology 

F I G U R E  6   Approximating user activity space from different methods 
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3.2.2 | Model fitting

To explore the impact of data quantity in modeling LBSM user activity space, we examine how the magnitude of 
both indicators (ROG and entropy) changes with the amount of data used (from 1 month’s to 12 months’ data). 
We are interested in whether an indicator approaches a limit as the number of months increases, and if so, how to 
approximate this limit using a mathematical model. For example, the indicator may increase, decrease, or fluctuate 
as the amount of data increases (Figure 7). Understanding how the indicators change provides useful insight for 
choosing an appropriate data size in future studies.

3.2.3 | Clustering analysis

The previous step addresses the impact of data quantity on activity space modeling from an aggregated per‐
spective. In addition, the curves in Figure 7 (“activity curves”) can be plotted for each user to further explore 
how this influence varies at an individual level. We conduct a clustering analysis to extract both representa‐
tive curves and outliers for the two indicators (ROG and entropy). Because this second part of the analysis 
aims to capture the similarities and outliers in individual activity patterns, we use Beijing as an exemplary 
study.

Here, we use the dynamic time warping (DTW) method to measure the similarity between activity curves in 
the clustering analysis. DTW is a robust distance measure widely applied in the fields of speech recognition and 
computer engineering, which is able to match stretched or distorted time series (Keogh & Ratanamahatana, 2005; 
Senin, 2008). Figure 8 shows an example of Euclidean distance and DTW distance when measuring the distance 
between two curves A and B. As can be seen, a non‐linear (elastic) DTW alignment generates a more intuitive 
similarity measure by shifting curve B to the right to optimize the alignment of two curves. Methodologically, 
DTW aims to construct a distance matrix between each node pair of curves A and B and find the best alignment 
between time series A and series B, which is the shortest path through the distance matrix (Figure 9). Therefore, 
DTW is more robust in dealing with distortion, lags, and displacement in time series, which can be a common issue 
in activity patterns analysis (Yuan & Raubal, 2012).

For example, Figure 10 shows three example ROG activity curves from our sample set. As can be seen, ac‐
tivity curves A and B indicate a similar increasing pattern with a time lag, whereas C demonstrates a fluctuating 

F I G U R E  7   Simulated curves 
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trend after the sixth month. Table 3 presents the distance measures between each pair of the three curves 
based on three commonly used similarity measures (DTW, Euclidean, and Fréchet; Eiter & Mannila, 1994). As 
shown in the results, the distance between A and B is larger than the distance between B and C based on a 
DTW algorithm, indicating that curves A and B are more similar. This is consistent with our common sense. 
However, both Euclidean and Fréchet distances indicate the opposite result, and neither of the two is able to 
effectively capture the similarity between curves A and B. This example further demonstrates that DTW is 

F I G U R E  8   Measuring the distance between time series: (a) Euclidean distance; and (b) DTW distance

F I G U R E  9   Constructing a distance matrix in the DTW algorithm
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better at differentiating various curve shapes with distortion and time lag, which is a common data issue in 
our analysis.

4  | RESULTS AND DISCUSSION

4.1 | Generic analysis

As a generic analysis, to explore the correlation between activity space indicators and the amount of data utilized, 
we calculate the average ROG and entropy values with different data collection durations (from 1 month’s data 
up to 12 months’ data).

Figure 11 shows how ROG and entropy values change with different amounts of data used. As can be seen, in 
all three cities, both indicators show an increasing trend with a longer data collection period; however, the increas‐
ing trend slows down and the indicator approaches a limit value as the amount of data continues to grow. This is 
consistent with the assumption of time geography (Hägerstrand, 1970), where an individual’s daily activity space 
is restricted to a certain spatial range due to physical constraints (e.g., moving speed), administrative boundaries, 
lifestyles, and so on.

To further quantify the change of activity space indicators with different data collection durations, we plot 
(Figure 12) the percentage of increase (pi) of the indicator:

(3)pi=
Xi+1−Xi

Xi

F I G U R E  1 0   Three example user activity curves 

TA B L E  3   Comparing DTW, Euclidean, and Fréchet distances

DTW Euclidean Fréchet

Distance (A,B) 0.4133 0.3092 0.3092

Distance (B,C) 0.4408 0.2565 0.1293
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where Xi stands for the value of indicator X calculated using i months’ worth of data. As can be seen from Figure 11, 
the increase of both ROG and entropy values decreases when the amount of data increases. Since the correlation 
does not appear to be linear, we apply a logarithmic transformation on pi and construct the following regression 
model:

where m is the number of months of data used in the analysis, and a and b are the coefficient and intercept of the 
fitted regression model (Table 4).

As can be seen, when the number of months increases, pi is close to zero, indicating that both indicators are 
approaching a limit value as the data size increases. Based on the fitted regression models, we approximated this 
limit value based on a 120 month simulation. The approximated limit values are considered “the true value” of an 
indicator when the data collection duration is unlimited. Tables 5‒7 show a comparison between observed ROG 
and entropy and the simulated limit values.

(4)log
(

pi
)

= am + b

F I G U R E  11   Average activity space indicators with different data collection durations: (a) ROG; and (b) 
entropy
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As can be seen, when using 12 months’ data, the calculated data is very close to the approximated limit value 
(over 96% for both ROG and entropy in all three cities). This result can be interpreted from multiple perspectives. 
On the one hand, the simulated ROG and entropy limits provide quantitative evidence to interpret user activity 
scale and randomness in a certain city. For example, in Beijing, the average ROG is approximately 6.88 km, which 
is larger than the limits in Shanghai (5.00 km) or Guangzhou (3.64 km). This is potentially determined by the city’s 

F I G U R E  1 2   Observed and fitted pi: (a) ROG (Beijing); (b) ROG (Shanghai); (c) ROG (Guangzhou); (d) entropy 
(Beijing); (e) entropy (Shanghai); and (f) entropy (Guangzhou)



946  |     YUAN and WANG

size, planning, and structure. However, the entropy values in the three cities appear to be similar, indicating that 
the size and structure of the cities has little impact on the randomness of individual activity space. The same 
analysis can be extended to different cities to study the impact of urban setting on activity space. On the other 
hand, we further confirmed that 1 year’s data is capable of capturing over 95% of variability in both ROG and en‐
tropy, whereas 6 months’ worth of data can only approach 70%–80% of the limit value. Future studies can adopt 
a similar methodology to determine a balance point between data quantity and analytical precision. In addition, 
the difference between ROG and entropy is worth noting. For example, with 6 months’ worth of data in Beijing, 
the calculated ROG is able to reflect over 83.12% of the limit value; however, for entropy, this proportion drops to 
69.83%, suggesting that various indicators may have a different level of sensitivity toward data quantity. Similar 
patterns exist for Shanghai and Guangzhou, indicating that entropy values require a longer data collection period 
to stabilize.

4.2 | Clustering analysis

In addition to exploring the impact of data quantity on activity space from an aggregated perspective, we are 
also interested in how LBSM users may respond differently to various data collection durations. As mentioned in 

TA B L E  5   Comparison of observed indicators and the approximated limit (Beijing)

Number of 
months (1–12) Average ROG (m)

ROG value/simulated 
ROG limit (%) Average entropy

Entropy value/simulated 
entropy limit (%)

1 1999.33 29.04 0.6055 17.74

2 2784.05 40.44 0.8271 24.23

3 3805.92 55.29 1.2675 37.14

4 4691.59 68.15 1.7604 51.58

5 5248.10 76.24 2.0997 61.52

6 5721.44 83.12 2.3833 69.83

7 6069.68 88.17 2.6599 77.94

8 6383.70 92.74 2.8892 84.66

9 6489.79 94.28 3.0453 89.23

10 6602.11 95.91 3.1876 93.40

11 6724.35 97.68 3.2307 94.66

12 6772.00 98.38 3.2839 96.22

Limit value 6883.71 100 3.4129 100

TA B L E  4   Parameters of fitted regression models

Coefficient (a) Intercept (b)
Coefficient of 
determination (R2)

Beijing ROG −0.4027 −0.3823 0.968

Entropy −0.3596 −0.1358 0.941

Shanghai ROG −0.3077 −1.0494 0.935

Entropy −0.3412 −0.2632 0.957

Guangzhou ROG −0.3463 −0.7771 0.936

Entropy −0.3407 −0.2558 0.918
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Section 3.2, we use Beijing users as a case study to explore individual variability. Figure 13 depicts different activ‐
ity curves from two categories of users in Beijing: (1) users with more than 100 check‐ins during the study period; 
and (2) users with only 10 check‐ins (i.e., users who barely meet our threshold in the data cleaning process). As 
can be seen, the first group of users shows a stronger variation in ROG values. This is potentially due to the small 
sample size in the first category (i.e., there are only 20 users with more than 100 check‐ins in our sample set). On 
the other hand, these users are potentially more active, so it is possible that their activity range fluctuated more 
during the study period and needs more data points to stabilize.

TA B L E  7   Comparison of observed indicators and the approximated limit (Guangzhou)

Number of 
months (1–12) Average ROG (m)

ROG value/simulated 
ROG limit (%) Average entropy

Entropy value/simulated 
entropy limit (%)

1 1073.16 29.51 0.6534 19.67

2 1705.67 46.90 0.9065 27.29

3 2213.66 60.87 1.2687 38.20

4 2648.4 72.82 1.6914 50.92

5 2728.24 75.02 1.9875 59.84

6 2963.07 81.47 2.2682 68.29

7 3184.79 87.57 2.5501 76.77

8 3317.81 91.23 2.7773 83.61

9 3349.84 92.11 2.9599 89.11

10 3453.73 94.97 3.1210 93.96

11 3520.08 96.79 3.1570 95.05

12 3570.47 98.18 3.2127 96.72

Limit value 3636.84 100 3.3215 100

TA B L E  6   Comparison of observed indicators and the approximated limit (Shanghai)

Number of 
months (1–12) Average ROG (m)

ROG value/simulated 
ROG limit (%) Average entropy

Entropy value/simulated 
entropy limit (%)

1 1974.22 39.51 0.6732 19.84

2 2400.45 48.04 0.9222 27.18

3 2906.91 58.18 1.2864 37.91

4 3541.28 70.88 1.7479 51.51

5 3780.70 75.67 2.0794 61.28

6 4101.40 82.09 2.3667 69.75

7 4388.91 87.84 2.6829 79.07

8 4530.99 90.69 2.8949 85.32

9 4650.74 93.08 3.0480 89.83

10 4727.55 94.62 3.1751 93.58

11 4804.86 96.17 3.2254 95.06

12 4881.48 97.70 3.2835 96.77

Limit value 4996.32 100 3.393 100
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To quantitatively cluster these individual patterns, we first normalized all activity curves to the range of [0,1] 
for individual users in Beijing and calculated the DTW distance among these curves. The output is a distance 
matrix storing the dissimilarity between each pair of users. We use the same distance matrix as the input of a 
hierarchical clustering analysis to identify similar groups and outliers in terms of how individual activity space 
indicators change with different data collection durations. When applying a hierarchical clustering method, the 
number of clusters is often affected by specific applications (Yuan & Raubal, 2012). As an example case study, 
we adopt the criteria discussed in Mardia, Kent, and Bibby (1979), where numCluster (the number of clusters) 
= max(2; sqrt(n/2)), and n is the number of users. Here we only include clusters with at least three users in the 
interpretation.

As can be seen from Table 8, when setting the number of clusters at 38, there are only two clusters with 
more than two users, and the majority fall into one cluster. Figure 14 shows the average activity curve of cluster 
A, which is very similar to the aggregated curve of the entire dataset in Figure 11a. This demonstrates a strong 
uniformity in terms of how user activity space indicators respond to different data collection durations. It further 

F I G U R E  1 3   Comparing activity curves with different check‐in frequencies: (a) ROG; and (b) entropy
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TA B L E  8   ROG clustering analysis summary

Cluster (>2 users)
Number of users 
in the cluster

A 2,730

B 3

F I G U R E  1 4   Average activity curve of cluster A 

F I G U R E  1 5   An outlier cluster B 
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confirms that the methodology of simulating limit values in Section 4.1 is appropriate for the majority of users in 
our dataset.

Inevitably, there are outliers in the clustering results. As shown in Figure 15, the ROG of users in cluster B 
peaks at the second month of the data collection period (May 2015), which corresponds to a 3 day national holi‐
day (Labor Day) at the beginning of May, when people in China often take extra vacation days to travel with their 
family. After that, the ROG in this group shows a declining trend, indicating that the users’ activity space goes back 
to a relatively stable spatial range after the Labor Day holiday.

This outlier cluster also demonstrates that more collected data does not necessarily correspond to a larger 
ROG. Figure 16 shows the check‐in locations of one example Weibo user, who mostly appeared in central Beijing, 
whereas there was one outlier point near the southern boundary of the Beijing study area on June 22, 2015. As 
can be seen in Figure 16, the calculated ROG values peak at 2 months and decrease when more check‐in points 
are included (i.e., the user is back to his/her “normal” activity pattern), as more check‐ins around central Beijing 
decrease the weight of the outlier point when calculating ROG.

F I G U R E  1 6   An example outlier user: (a) trajectory; and (b) activity curve 
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Like ROG, we also clustered the entropy values and the results indicate a similar pattern to the ROG, where 
the majority of users (2,732 out of 2,775) show similarly increasing patterns when more data are collected 
(Figure 17). Based on the definition of entropy, it represents the level of randomness of user activity patterns. 
Hence, Figure 17 shows that, for the majority of users, more data reveals more randomness of their acitvity 
patterns.

However, Figure 18 shows two outlier clusters with a decreasing trend, where more check‐in data at regular 
places actually improve the regularity of user patterns. Note that in Figure 18a, the entropy values reached a 
steady point because the users did not contribute sufficient data in the second half of the study period, whereas 
in Figure 18b, the entropy values of this cluster decrease gradually when the amount of data increases, which 
indicates that the longer the study period is, the higher level of regularity the data can reveal about these outlier 
users.

F I G U R E  1 7   Increasing trend of entropy: (a) average activity curve; and (b) example users
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5  | CONCLUSIONS

This article explores the effectiveness of LBSM in modeling human activity space. More specifically, we tested 
how different amounts of check‐in data affect the calculation of two activity space indicators, ROG and entropy, 
in three Chinese cities. We conducted two analyses to explore the change of activity space indicators from both 
an aggregated and an individual perspective.

• First, we fitted linear regression models with logarithmic transformation to reflect the correlation between 
the change of indicator values and the amount of data used. The results indicate that both ROG and entropy 
increase when the amount of data increase. However, the proportion of increase slows down and approaches 
zero eventually. We also approximated the limit values and verified that with 12‐months’ data, we are at ap‐
proximately >95% magnitude of the limit values for both indicators in all three cities.

• Moreover, we also went one step further and investigated different user patterns based on a clustering analysis 
of Beijing users. The results indicate that even though for the majority of users, their ROG and entropy values 

F I G U R E  1 8   Entropy outlier clusters: (a) outlier cluster B; and (b) outlier cluster C 
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grow when the data collection duration becomes longer, we can still observe certain patterns where outlier 
points are penalized with a longer data collection window, resulting in a decreasing trend for activity space 
indicators. This result is helpful for investigating the heterogeneity of user behavior patterns and exploring how 
data collection strategies should be personalized for different target users in future studies. For example, for 
users who travel more during holidays, researchers should conduct more extensive data collection to stabilize 
any activity measurements that may be affected by outlier points (e.g., overseas travel). The analysis on the 
regularity behind individual behavior also provides new insight for modeling human activity space in the age of 
instant access, which is a crucial issue in human geography.

As mentioned in Section 1, this research contributes from both the methodological and the empirical perspec‐
tives. We examined a methodology to analyze the efficiency of LBSM in modeling human activity space, which can be 
used to optimize data collection in future studies. In addition, we also explored the activity space patterns for three 
of the largest cities in a rapidly developing country. The aggregated activity patterns and outliers provide valuable 
input for urban planners and policymakers to understand the dynamics of urban residents in three densely populated 
Chinese cities. We foresee that the broader impact of this research will yield an enhanced understanding of applying 
LBSM data in human activity studies and other widely applicable areas of geography, such as transportation and urban 
planning.

There are several limitations to this study that are worth further investigation. For example, due to the de‐
mographic biases of social media users, most active LBSM users are young people who are enthusiastic about 
the newest technologies, so the data used in this study is not a randomly selected sample of the entire urban 
population. In addition, this study extracts geotagged posts directly based on location, so we did not differen‐
tiate between residents and travelers. Appendix A describes a pilot study based on how likely a user is to be a 
resident of Beijing. However, since the scope of this article focuses on introducing a data pre‐processing strategy 
instead of explaining the pattern of residents in a particular city, we did not eliminate users who are potentially 
travelers. It is also possible that computer algorithms (instead of real users) automatically generate certain Weibo 
accounts. Additionally, even though human activity patterns can be predictable, randomness is still an inevitable 
component of human mobility (Song et al., 2010), which leads to the difficulties and challenges in ground‐truthing 
human activity studies. Future studies should focus on generating a more systematic framework to deal with the 
uncertainty issues of modeling user activity patterns from LBSM. We also plan to explore more activity indicators, 
such as the shape and movement direction of activity spaces. The methods and analysis proposed in this study 
can also be applied to other social media platforms to test their robustness and extensibility. Due to the limitation 
of data sizes in less developed areas in China, we did not investigate the patterns in smaller cities or rural areas. 
Future studies can also explore the similarity/dissimilarity between cities in various stages of development when 
the data becomes available.
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APPENDIX A:  COMPARING URBAN RESIDENTS WITH TR AVELERS

In a pilot study to explore user backgrounds in Beijing, we divide all users in our sample set into the following three 
categories.

• “Residents”: Users with more than 80% of their check‐ins located in Beijing.
• “Uncertain”: Users with more than 20% and fewer than 80% of check‐ins located in Beijing.
• “Travelers”: Users with fewer than 20% of their check‐ins located in Beijing.

The ratio of the three groups in our sample set is “Residents”: “Uncertain”: “Travelers” = 0.845: 0.151: 0.004. As 
shown in Figure A1, the “Residents” and “Uncertain” groups indicate very similar patterns, whereas the “Travelers” 
group shows a higher variation for both ROG and entropy values. This is potentially due to the limited sample size (for 
both the number of users and the number of records from each traveler). The results further confirm the existence of 
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outlier users as discussed in Section 4.2, and provide a possible explanation for the outliers, that travelers inevitably 
exhibit different patterns from local residents.

FIGURE A1 Comparison between residents and non‐residents: (a) ROG; and (b) entropy


